INTERNATIONAL JOURNAL OF ENERGY RESEARCH
Int. J. Energy Res. 2006; 30:1158—1174
Published online 17 May 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/er.1212

An energy benchmarking model based on artificial neural
network method with a case example for tropical climates

Melek Yalcintas™"

AMEL Technologies Inc., 1164 Bishop St, Suite 124-302, Honolulu, HI 96813, U.S.A.

SUMMARY

Energy benchmarking is an important step in evaluating a building’s energy use and comparing it with
similar buildings in similar climates. Depending on the benchmarking results, extra measures can be taken
to reduce energy consumption when the subject building has been assessed to consume more than other
similar buildings. This study presents the current state of energy benchmarking-related research and
available tools. An artificial neural networks (ANN)-based benchmarking technique is presented as a
highly effective method. The model specifically focuses on predicting a weighted energy use index (EUI) by
taking into consideration various building variables, such as plug load density, lighting type and hours of
operation, air conditioning equipment type and efficiency, etc. Data collected from laboratory, office and
classroom-type buildings and mixed use buildings in Hawaii are used to present the ANN-based
benchmarking technique. The developed model successfully predicted the benchmarking EUI for the
buildings considered in the study. The model coefficient of correlation was 0.86 for the whole building
benchmarking analysis, indicating a good correlation between the measured EUI and the ANN
predictions. Additionally, the use of ANN benchmark model for predicting potential energy savings from
retrofit projects was evaluated. Some of the benchmarking input variables were modified to reflect a
potential energy savings from a retrofit project and the new input set was simulated with the ANN model.
The preliminary results show that the developed ANN model can be used to predict energy savings from
retrofit projects. Copyright © 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Energy benchmarking is an initial step in assuring energy-efficient buildings. In this method, the
average energy performance of similar buildings in the same climate zone is compared and the
ones with higher energy consumption identified. When the benchmarking indicates that a
building has a higher energy consumption compared to similar buildings, it would necessitate
further evaluation in order to identify as per the energy conservation opportunities (ECO).
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In energy benchmarking, the energy consumption is usually expressed in terms of energy
use intensity (EUI), which is defined as energy use per square meter per year, or k Whm 2 yr~".
The EUI provides normalized energy use assessment per year by building-floor area. This
normalized measure is expected to yield a comparison base for different buildings’ energy use, in
turn, provide an indication for buildings where improvements need to be made.

Aside from the differences in methods, the main challenge in the benchmarking of existing
buildings is the availability of sufficient statistical comparative data. The most common
database used in existing-building benchmarking is the commercial building energy consump-
tion surveys (CBECS). The CBECS data consists of statistical information collected on energy
consumption, energy expenditures, and energy-related characteristics of commercial buildings in
the United States. The survey has been conducted periodically since 1978 by the Energy
Information Administration Division of the Department of Energy. In a more recent effort,
California has developed a state-wide database called California’s commercial end use survey
(CEUS). The CEUS data was collected from California’s utility companies. This database also
serves as the main source to the Cal-Arch benchmarking tool.

Energy benchmarking has been in focus for many public and private organizations. Various
researches have been done and benchmarking tools have been developed. Kinney and Piette
(2002) have described the development of a California commercial building benchmarking tool
Cal-Arch in their recent study. The Cal-Arch uses existing survey data from California’s CEUS.
In a recent study, Matson and Piette (2005) have provided review of energy benchmarking
studies for commercial buildings. A stepwise linear regression method developed by Sharp
(1996, 1998) is most commonly used in benchmarking buildings based on statistically weighted
EUI. The Energy Star building benchmarking tool developed by the Environmental Protection
Agency (EPA) and Department of Energy (DOE) is an example for stepwise linear regression
method-based benchmarking. Details of the Energy Star Building and benchmarking can be
followed from the article by Hicks and Von Neida (2000). In a study by Federspiel et al. (2002),
a model-based benchmarking method especially suitable for laboratory buildings was
developed. Additional discussion of laboratory benchmarking and practical considerations
and limitations can be followed from Mathew et al. (2003).

This study presents a benchmarking method that utilizes artificial neural networks (ANN) in
its computations. The ANN method offers better accuracy in its benchmarking prediction and
flexibility through its computational structure when compared to what is available today. The
foremost feature of ANN method is that the benchmarking algorithm renews itself as new
building data is entered in the database. Whereas, the currently used linear regression, based on
the statistical model in the EPA/DOE Energy Star benchmarking, requires determination of
empirical constant coefficients manually each time the database is modified. An ANN
benchmarking model was developed using mixed building data from tropical climate
representing a case example, and its performance was evaluated.

2. ANN MODELLING
The review of the existing energy benchmarking studies indicates a need for improvements
in benchmarking methods and databases. The up to date benchmarking models developed
for existing buildings, use either a raw data visualization method (Kinney and Piette, 2002),

a regression-based statistical modelling (Sharp, 1996, 1998), or a detailed idealized building
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energy modelling (Federspiel ef al., 2002). The raw data visualization does not take into
account the building envelope differences, building operation hours, or building occupancy
and equipment density. While it gives a rough idea of building energy usage percentile, it is not
an apple-to-apple comparison. The linear regression based statistical model requires the
determination of empirical constant coefficients for each climate or regional division. This
needs to be revised manually each time a new data set is entered into the database, or a
new CBECS database is developed. There is ample room for development especially in this
area which targets better modelling of the statistical data with advanced compu-
tational methods. The existing idealized building energy models are either developed for
only a specific class of applications (Labs 21), or require cumbersome data entry (DOE-2.2).
A generalized building energy model which simplifies interface development is required in
this area.

ANN, representing non-parametric techniques for achieving arbitrarily complex functional
mappings, are promising for wide applications in building-energy benchmarking. The foremost
feature of ANN method is that the benchmarking algorithm will renew itself if a new building
data is entered in the database. Additional advantages of ANN methods over other techniques,
such as statistical methods and simulation, are: faster learning time, simplicity in analysis, beret
accuracy in prediction and adaptability to changes in a buildings energy use. This study presents
the first-time application of the ANN method in energy benchmarking.

The computational structure of ANN consists of an input layer, which accepts patterns from
the environment and an output layer that shows response with regard to the environmental
variables. There are also hidden layers which do not directly interact with the environment;
rather, they enact the primary function of relating the input to the output. They consist of input
weights, biases and transfer functions.

The neural network training process simply involves modification of weights until the
predicted output is in close agreement with the actual output. Defined relations between the
input layers, the hidden layers and the output layers determine a particular neural network
model. Three types of networks used most commonly in ANN applications are feed forward
networks, competitive networks and recurrent associative memory networks. Each network type
may have different learning rules. The learning rules are described in broad categories of
supervised learning, unsupervised learning and reinforcement (or graded) learning rules. Many
studies on ANN theory have been published along with the development of the method.
Zurada (1992) presents the theory of neural networks which can be followed by readers
with different technical trainings. A practical description of ANN methods with sample
applications are presented in Hagan er al. (1997). A study by Yalcintas and Akkurt (2005)
presents use of ANN methods in building energy predictions and energy savings predictions due
to building retrofits.

The data used for the benchmarking program in this study were collected in two phases. In
the first phase, data collected from previous preliminary energy assessments (PEA) reports for
over 60 buildings in Hawaii were evaluated. The building types evaluated include office,
classroom, laboratory-type buildings, or mixed use buildings including any of the two or all
office/classroom/laboratory activities. The data categories extracted from the PEA reports are
listed in Tables I and II. Table I lists the general data on the building size, age, operation, and
energy usage, as well as PEA estimates for lighting, air conditioning and plug loads end-use
energy percentage distribution. Table II list survey questionnaire developed to estimate yearly
electricity consumption for plug load, lighting and air conditioning end-uses.
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Table I. General data on the building properties and operation.

Building general information

Operation hours Yearly electricity usage
Age Percentage electricity used for

Square feet area

Air conditioning

Table II. Building (A) plug load survey questionnaire, (B) lighting demand survey questionnaire,
(C) air conditioning demand survey questionnaire.

(A)
1. COMPUTERS
Few through the building
Less than or equal to 1/40m?
Less than or equal to 1/30 m?
Less than or equal to 1/20m?
Less than or equal to 1/10 m?
Computer server facility serving a single building
Computer server facility serving multiple buildings
2. FUME HOODS

0 None exists

1 Few through the building

2 Less than or equal to 1/100m?

3 Less than or equal to 1/50 m?

4 Less than or equal to 1/20 m?
3. OTHER EQUIPMENT

NN BN -

High electricity demand lab testing equipment, moderate motorized equipment, heavy cooking

0 None exists
1 Few lab equipment including analysers, refrigerators, etc.
2 Moderate lab equipment, light motorized equipment, moderate cooking equipment.
3
equipment
(B)

1. Daily hours building lighted
2. Percentage floor area building lighted
3. Building internal lighting type
1 High efficiency fluorescent lighting
2 Low efficiency fluorescent lighting
3 Low efficiency fluorescent and incondescent lighting
4. Building external lighting type
1 Low lumen external lighting
2 Medium lumen external lighting
3 High lumen high efficiency external lighting
4 High lumen low efficiency external lighting

(©)

1. Daily hours building air conditioned

2. Percentage floor area building air conditioned
3. Computer intensity rate (from (A) survey)

4. Internal lighting type (from (B) survey)

Copyright © 2006 John Wiley & Sons, Ltd.
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Table II. Continued.

5. Air conditioning equipment conditions
Majority window AC uits
50/50 window units and DX split systems
Majority DX split systems
50/50 DX split systems and chilled water system
Majority chilled water system newer equipment variable flow conditions
Majority chilled water system newer equipment constant flow conditions
Majority chilled water system older equipment constant flow conditions
6. Building envelope, windows
1 More than 40% glass
2 30-40% glass
3 20-30% glass
4 Less than 20% glass
7. Building envelope, solar window tinting/adjacent building shading
1 Yes
2 No
8. Building envelope, wall type
1 Concrate
2 Insulated frame
3 Non-insulated frame
9. Building envelope, roof insulation
1 Yes
2 No

~N Wbk wWN o~

Answers to most of the survey questions in Table II existed in the PEA reports. Answers to
questions such as ‘building internal lighting type’, ‘air conditioning equipment type’, ‘floor
percentage air conditioned’ could be extracted from the PEA reports. However, answers to few
questions were not tabulated explicitly in the reports, either because they were not required
explicitly for the PEA analysis, or they required relative comparison among the buildings that
were benchmarked. For example, computer density information required for plug load estimates
was not available in the PEA report. For the purpose of this benchmarking study, the survey
questions on the building equipment density and distribution (other than computer) required
judgment for comparison with other buildings in the benchmarking group. Answers to such
questions were estimated by the author, since the author either has actually conducted a PEA
analysis on a particular building or was very familiar with the building. After gathering the
information on the survey questions, several buildings in the benchmarking group were field
verified for the accuracy of the estimates.

Figures 1 and 2 represent the total floor area and EUI distribution of the buildings used in
the ANN modelling study. While the total building EUI clusters in the 1.5-4.5k Whm 2yr ' in
Figure 2, the building square footage does not show any recognizable distribution pattern
in Figure 1. This can be attributed to the mixed category use of the buildings in the
benchmarking data.

The ANN model used in this study is based on Levenberg—Marquardt back-propagation
algorithm. A three-layer feed-forward-type configuration including an input layer, hidden layer
and an output layer was developed. Three separate ANN sub-models were developed for
benchmarking the plug loads, lighting and HVAC end-use electricity. Those ANN sub-models
were used to evaluate the survey questionnaire and prediction capacity in each category.

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Energy Res. 2006; 30:1158—1174
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Figure 1. Building area distribution of the data used in the ANN benchmarking model.
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Figure 2. Total building EUI distributions of the data used in the ANN benchmarking model.

The sub-ANN models do not have any impact on the final ANN benchmarking model.
The same Levenberg—Marquardt back-propagation algorithm was used in all models with
varying input numbers.

The input to the ANN sub-model for the plug load EUI prediction is the three variables listed
in the Table II(A), and presented numerically in Table III. The output of the model is the plug
load EUI. The number of hidden layer nodes is five. Similarly, the input for the lighting EUI
ANN sub-model is the four variables listed in Table II(B), and presented numerically in
Table II1. The output to the model is the lighting EUI, and the number of hidden layer elements
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Table III. ANN benchmarking model input data.

Plug load input Lighting input HVAC input
Floor
Floor Internal External percentage HVAC

Fume  Other Lighting percentage lighting lighting HVAC air equipment Output
Computers hoods equipment hours lighted type type  hours conditioned type EUI

3 1 1 15 80 3 2 24 100 7 5.4
2 0 0 15 60 2 1 18 80 7 2.5
4 0 3 15 70 2 3 24 90 6 5.6
3 0 1 15 80 3 2 24 70 7 3.5
3 1 2 15 80 3 3 24 100 7 6.5
3 2 3 15 50 2 2 24 60 7 3.4
6 2 3 18 90 1 3 24 60 5 4.5
4 2 1 18 80 2 4 24 60 3 42
2 1 1 18 80 3 2 24 70 6 2.3
3 2 1 12 80 2 3 24 90 4 3.5
3 2 2 18 90 3 3 24 100 4 5.3
4 0 2 18 90 3 4 24 80 5 4.0
2 2 1 18 80 3 1 24 80 6 2.3
4 2 2 18 90 3 4 24 100 7 7.9
3 2 1 12 70 1 1 24 80 5 3.0
3 2 2 15 90 2 3 24 40 3 2.9
3 2 2 10 60 2 2 24 50 2 2.2
2 0 0 12 60 3 2 24 60 3 1.4
3 1 1 12 80 3 2 24 90 4 2.7
2 0 0 12 50 2 1 24 80 3 1.8
3 0 1 12 80 3 2 24 80 4 2.5
5 0 1 10 90 2 4 10 70 3 3.7
7 0 1 10 80 2 2 24 60 7 3.9
2 0 0 12 100 2 4 24 50 7 2.2
2 0 0 18 80 3 3 24 70 6 2.5
1 0 0 12 80 2 2 24 20 1 1.0
2 0 0 12 70 2 4 12 80 6 2.7
4 0 0 12 70 2 4 15 60 7 3.5
1 0 0 12 80 2 1 24 20 1 1.0
4 0 3 15 70 3 3 10 40 4 3.0
1 0 0 12 70 2 3 24 50 3 2.0
3 0 0 18 80 2 3 24 60 3 1.8
1 0 0 10 50 2 1 10 30 2 1.6
3 0 0 10 80 2 1 10 25 4 1.1
3 0 0 10 50 2 1 10 20 2 1.6
1 0 0 10 50 2 1 10 20 2 1.6
3 0 1 10 50 3 3 10 10 2 1.6
5 0 0 10 70 2 3 12 50 2 3.0
5 0 0 10 80 2 3 12 50 2 3.1
4 0 2 12 70 2 4 15 50 7 3.6
2 0 0 10 60 2 1 12 30 1 1.2
3 0 0 10 60 2 3 12 40 3 2.1
3 0 0 10 60 2 3 12 40 3 23
5 0 0 12 70 2 4 14 60 4 3.8
2 0 0 10 50 3 2 12 20 2 1.6
2 0 3 15 70 3 4 14 60 6 3.7
1 0 0 10 50 3 1 10 40 4 0.9
3 0 0 12 80 2 3 24 80 7 29
3 0 0 10 70 2 4 14 70 2 3.2
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Table I11. Continued.

Plug load input Lighting input HVAC input
Floor
Floor Internal External percentage  HVAC

Fume Other Lighting percentage lighting lighting HVAC air equipment Output
Computers hoods equipment hours lighted type type  hours conditioned type EUI

3 0 0 15 60 2 3 14 80 4 2.8
3 0 0 10 80 2 3 14 80 3 33
1 0 0 10 50 2 1 14 70 3 1.1
1 0 0 10 70 2 1 14 70 2 14
1 0 0 10 70 2 2 14 70 2 1.7
5 0 0 18 100 2 4 24 80 7 2.9
4 0 0 18 100 2 4 24 80 7 2.4
6 0 0 18 100 1 4 24 60 5 33
2 0 1 18 100 2 3 24 80 7 2.3
3 0 0 18 100 2 3 24 80 4 1.3
2 2 2 18 90 2 3 24 100 4 5.1
2 2 2 15 100 2 4 24 90 7 4.3
2 2 3 15 100 3 4 24 100 7 8.0
3 1 0 18 100 2 3 24 80 5 1.9

is seven. Finally, the input for the HVAC EUI ANN sub-model is the first five variables listed in
Table II(C), presented numerically in Table III (all ‘HVAC input’ columns, computers column
under ‘plug load input,” and internal lighting column under ‘lighting input’). The output is the
HVAC EUI, and the number of hidden layer elements is seven. The variables listed in the survey
questions 6-9 in Table II(C) were not used in the HVAC ANN sub-model, since the variables
had similar values, representing similarities in the building wall and window types and building
external insulation. The questions 3 and 4 in Table II(C) were the internal lighting type and
computer intensity rate. Both were available in Tables II(B) and II(A), respectively.

The final ANN benchmarking model input includes all variables listed in Tables II(A) and
(B), and variables 1, 2 and 5 from Table II(C), resulting with a total of 10 input variables. The
output to the model was the whole building total EUI. As can be seen from the input—output
list, none of the partial EUIs for lighting, plug loads and HVAC end-use that were evaluated in
the ANN sub-models are included in the final ANN benchmarking model. The number of
hidden layer nodes for the ANN sub-models and final ANN benchmarking model is five.

The input data of the ANN benchmarking model is listed in Table III. For the ANN model,
the data was divided into two subsets. The first subset is the training set, which is used for
computing network weights and biases. The second subset is the testing set, which is used to test
the accuracy of the ANN model. In this study, three-fourths of the data was used for training
and remaining one-fourth was used for testing. The test set was composed by extracting every
fourth input row from Table I1I starting with the second row. The remaining data in Table 111
was used as the ANN training set. In the training process, the training continues until the sum of
squared errors and sum of square weights in the Levenberg—Marquardt algorithm reaches a
steady level. When a steady level is reached, the training stops, and the model is tested with the
test set. The test set error is not used in computations during the training process; it is used only
to compare accuracy of the ANN model. A low error on the testing network is a good measure
of an acceptable ANN model.

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Energy Res. 2006; 30:1158—1174
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MATLAB neural network toolbox was used in developing the ANN model. A MATLAB
normalization function was used to normalize the input and output values. The normalization
was done such that the mean value of the data was zero and the standard deviation was unity.
The activation function used in the ANN model was a sigmoid function. In order to avoid over-
fitting of the data and to provide a good generalization capability to the developed ANN
building energy prediction algorithm, an automated regularization method was used. The
automated regularization feature is built into the MATLAB Levenberg—Marquardt algorithm
that is used for the ANN modelling in the study.

3. RESULTS AND DISCUSSION

As mentioned earlier in Section 2, the ANN sub-models were developed to evaluate the accuracy
and adequacy of the benchmarking survey questionnaire. Since energy distribution by end-use
was already available from the PEA reports, they were used as output in the ANN sub-models,
along with the survey questionnaire being the input to the sub-models.

The end-use EUIs from the plug load, lighting and HVAC predicted by the ANN sub-models
for the test data, along with the actual EUIs calculated in the PEA reports, are shown
graphically in Figures 3, 4 and 5, respectively. The data-points in the figures are of the test data
used in the ANN models, which makes-up %th of the overall benchmarking data-points. The
other % of the data were used for training the ANN model. A description of test data and
training data based on Table III is provided in the previous section. When a new data becomes
available to benchmark with the ANN model, the input variables in the data is simply
introduced to the model, and the model provided the estimate for the output EUI, using the
network node weights that were determined during the model training phase. In the figures, the
predictions are somehow closer to the actual measurements.

Figures 6, 7 and 8 show the correlation rate between the measured EUIs and ANN predicted
EUIs for the same plug load, lighting and HVAC data presented in Table III for both test data
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Figure 3. Comparison of ANN predicted plug load EUI to measured EUIL
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Figure 5. Comparison of ANN predicted HVAC EUI to measured EUI

and training data. In Figures 6-8, ‘4’ corresponds to the ANN predicted EUI and ‘7"
corresponds to the target EUI (or the measured EUI data). The dash line is the best linear
regression relating the predicted EUI to the target EUL. R in the figures is the correlation
coefficient between the network outputs and targets. Correlation coefficient closer to 1.0 is an
indication of a successful ANN model.

The test data in Figure 6, representing the plug load ANN model results, has a correlation
coefficient of 0.95, which is a very good indication that the model will provide reliable prediction
for a new set of survey questionnaire that the model has not seen before and EUI estimate is
required. The lighting end-use ANN sub-model predictions were illustrated in Figure 7 for both
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Figure 6. ANN model estimated plug load EUI (represented by A) compared against original
EUI (represented by 7): (a) Training data; and (b) testing data.
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Figure 7. ANN model estimated lighting EUI (represented by 4) compared against original
EUI (represented by 7): (a) Training data; and (b) testing data.

test data and training data. The test data in the figure has a coefficient of correlation R = 0.92.
While it is still a good estimate of the EUISs, the input output correlation is not as good as the
plug load estimates presented in Figure 6. This may be partly related to occupant interference
with the lighting operations. Some occupants may leave the lights on when they leave the space
and some may not, or some spaces may be used less frequently than the other spaces. Also, the
survey questionnaire is aimed to capture general information on the lighting type and usage. It
does not address specific questions on lighting intensity, efficiency and lighting ‘on’ times. The
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Figure 8. ANN model estimated HVAC EUI (represented by 4) compared against measured
EUI (represented by T): (a) Training data; and (b) testing data.

model accuracy may be improved if more detailed questions were added into the survey
questionnaire, such as percentage distribution lighting by efficiency and intensity. However, it is
usually difficult to find correct answers to such detailed questions during a general survey.

The HVAC end-use ANN sub-model results for both test data and training data are
illustrated in Figure 8. The figure shows a coefficient of correlation of 0.95 for the test data.
Having the HVAC correlation coefficient equal or higher than that of the lighting and plug load
was a surprise, since estimating HVAC end-use EUI can be even more difficult than estimating
the lighting end-use EUI. The determinants of HVAC energy usage is not only dependent on
equipment efficiency and controls, but is also dependent on plug loads, lighting, human
occupancy, HVAC designer’s specifications and any alterations or renovations on the building.

The ANN sub-models for the end-use EUIs provided reasonable predictions illustrating the
acceptability of the survey data for the total energy benchmarking. In the next step, the ANN
benchmarking was developed with the input and output data in Table III. The details of the
ANN model development was provided in the previous section. Here, we present the model
results. Figure 9 present the comparison of the EUIs predicted by the ANN model vs the actual
EUTIs determined from the PEA reports for the test data. Figure 10 shows whole building ANN
model energy use prediction for both test data and training data. The model coefficient of
correlation is 0.86 based on the test data, indicating good correlation between the input
variables and the output total EUL If a new survey data with unknown EUI is inputted to the
model, the model can predict the EUI of the survey building.

Another way of using this ANN benchmarking model is to estimate approximate energy
savings from an energy efficiency upgrade of a building. The building upgrade may be energy-
efficient lighting retrofits, air conditioning retrofits, or improvements in building envelope. This
is a new concept in energy benchmarking. To the author’s knowledge, currently there is no study
that investigates the use of energy benchmarking models in building energy savings estimates
due to an energy-efficient building retrofit. In order to test the idea, the survey data from several
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Figure 10. ANN model estimated whole building EUI (represented by A) compared against measured EUI
(represented by 7): (a) Training data; and (b) testing data.

of the buildings in the Table I1I were changed to reflect energy-efficient upgrades. Then, the new
data was inputted into the ANN benchmarking program, and the EUI estimates were obtained
as the ANN output. More specifically, three different building retrofits that could save energy
were evaluated. Those retrofits were: (1) building interior lighting retrofits with energy-efficient
alternatives, (2) building exterior lighting retrofits with energy-efficient alternatives, (3) air
conditioning upgrades. No upgrades for the plug load data were possible, since it was difficult to
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categorize the potential energy savings upgrades on the plug loads. The selected original survey
data for the purpose, which is same as the test data used in the ANN model development, is
listed in Table IV.

For the building internal lighting retrofits, the data in the internal lighting column of Table IV
was replaced with ‘1°, which represents high efficiency fluorescent lighting. Then the modified
data was introduced to the already developed ANN model to obtain the new EUI estimates. The
resulting EUT estimates from the retrofits along with the original ANN prediction are shown in
Figure 11. As can be followed from the figure, the EUI prediction after the retrofit is usually less
then before the retrofit. However, the reduction in EUI is not proportional in all cases reflecting
either higher energy savings or potential error factor in the method.

Similarly, for the building external lighting retrofits, the data in the external lighting column
of Table IV was replaced with ‘1°, representing low electricity consumption for external lighting.
The modified data was introduced to the ANN model and new EUI estimates were obtained.
Figure 12 shows the resulting EUI estimates. In this case also, the EUI predictions after the
retrofit are usually less than before the retrofit. However, the reduction in EUI is not
proportional in all cases reflecting either higher energy savings or potential error factor in the
method.

Finally, high-efficiency central plant cooling method was selected for the HVAC retrofits,
which was represented by ‘5’ in Table I'V. In the table ‘7’ is the most energy-consuming item, and
‘1’ is the least energy-consuming item. ‘1’ represents window air conditioning units. It is not an
energy-efficient air conditioning alternative, but because a window air conditioner is turned on
or off frequently by the user, its energy consumption is less when compared to even the most
energy-efficient central cooling system. Also, if a building is air conditioned by a window unit

Table IV. Data extracted from Table III for predicting energy savings from a building retrofit
using the ANN benchmarking model.

Plug load input Lighting input HVAC input
Floor
Floor Internal External percentage HVAC
Fume Other Lighting percentage lighting lighting HVAC air equipment
Computers hoods equipment  hours lighted type type hours conditioned type
2 0 0 15 60 2 1 18 80 7
3 2 3 15 50 2 2 24 60 7
3 2 1 12 80 2 3 24 90 4
4 2 2 18 90 3 4 24 100 7
2 0 0 12 60 3 2 24 60 3
5 0 1 10 90 2 4 10 70 3
1 0 0 12 80 2 2 24 20 1
4 0 3 15 70 3 3 10 40 4
3 0 0 10 80 2 1 10 25 4
5 0 0 10 70 2 3 12 50 2
3 0 0 10 60 2 3 12 40 3
2 0 3 15 70 3 4 14 60 6
3 0 0 15 60 2 3 14 80 4
1 0 0 10 70 2 2 14 70 2
2 0 1 18 100 2 3 24 80 7
2 2 3 15 100 3 4 24 100 7
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Figure 11. Energy savings prediction from a building internal lighting retrofit by using
ANN benchmarking model.
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Figure 12. Energy savings prediction from a building external lighting retrofit by using
ANN benchmarking model.

system, usually a small portion of the building square footage is provided with air conditioning.
Whereas, a central air conditioning system usually covers a larger floor area than the window
unit. Therefore, in this retrofit analysis ‘1’ could not be selected as an energy conservation
alternative. The alternative ‘5’ was the possible energy conservation retrofit alternative in the
HVAC EUI estimates. Figure 13 shows the resulting ANN prediction for EUT after the retrofit
and comparison with the original prediction. The prediction for this case was somehow different
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Figure 13. Energy savings prediction from a building HVAC retrofit by using ANN benchmarking model.

than the previous two cases: While the EUI decreased for some data-points in the figure, it
increased on some others indicating the energy usage increased from the retrofit. This was a
reasonable prediction because of the differences of HVAC systems as discussed.

The energy savings prediction capability of the ANN benchmarking program illustrated here
is based on the model simulation only. Further validation either through building energy
modelling or actual cases should be evaluated to prove the accountability of the prediction
results, when the ANN benchmarking program is intended to be used for energy savings
predictions due to a building retrofit.

4. CONCLUSIONS

Evaluating a building’s energy usage efficiency by a benchmarking method is the least expansive
method when time and cost is concerned. Within its current capabilities, an energy
benchmarking method does not provide detailed results about the building’s energy usage
characteristics when compared to a PEA method or an energy feasibility analysis. However, the
method serves well for identifying a building with higher energy consumption when compared to
similar buildings in its category (office, hospital, school, hotel, etc.). For the future, the energy
benchmarking concept may expand to provide detailed evaluation of a buildings energy usage
and potential savings through retrofits based on sufficient data and content of survey
questionnaire. The study presented here may serve in the development of the future
benchmarking concept. Specifically, the ANN-based analysis approach presented here brings
flexibility in data processing and modelling. The concept of the energy savings prediction
through the benchmarking model is introduced for the first time in this study.

The data used in the model was collected by reviewing existing energy audit reports for over
60 buildings. Large variations existed in the data inputs including the building square footages,
building ages, plug load densities, lighting densities and building ventilation requirements and
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air conditioning. Air conditioning was the primary consuming component of the buildings’
electricity. Also, the dataset was specific to the Hawaiian tropical climate, where the variations
between the seasons are at minimum and most of the building equipment operates throughout
the year. Compared to data from other parts of the U.S. or other non-tropical countries,
potential energy recording errors/deviations were at minimum in the data used here. The ANN
model was quite successful which had a correlation coefficient of 0.92 for the whole building
EUI prediction.

This study also presents the potential use of benchmarking method for energy savings
prediction due to a building’s energy efficiency upgrades. Several energy-efficient upgrades were
identified including building internal and external lighting replacement with energy-efficient
alternatives, and HVAC upgrades. Benchmarking data for the buildings in the ANN test set
were revised with the corresponding numerical data representing the upgrades. The whole
building EUIs after the building upgrades were predicted with the ANN model. While results
showed decrease in EUIs in general, it was not possible to measure the accuracy of the
prediction, since no actual data was available to compare the predictions. Overall, the study
presents potential use of ANN methods in energy benchmarking. The model can be extended to
predict energy savings due to a building’s energy-efficient upgrades. The further studies on the
ANN benchmarking concept includes use of larger databases such as CBECS or CEUS, and
testing the energy savings predictions through benchmarking methods with actual data.
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